Aerafin[™] 35 polyolefin polymer Improving filter application

TRENDS Impacting filtration

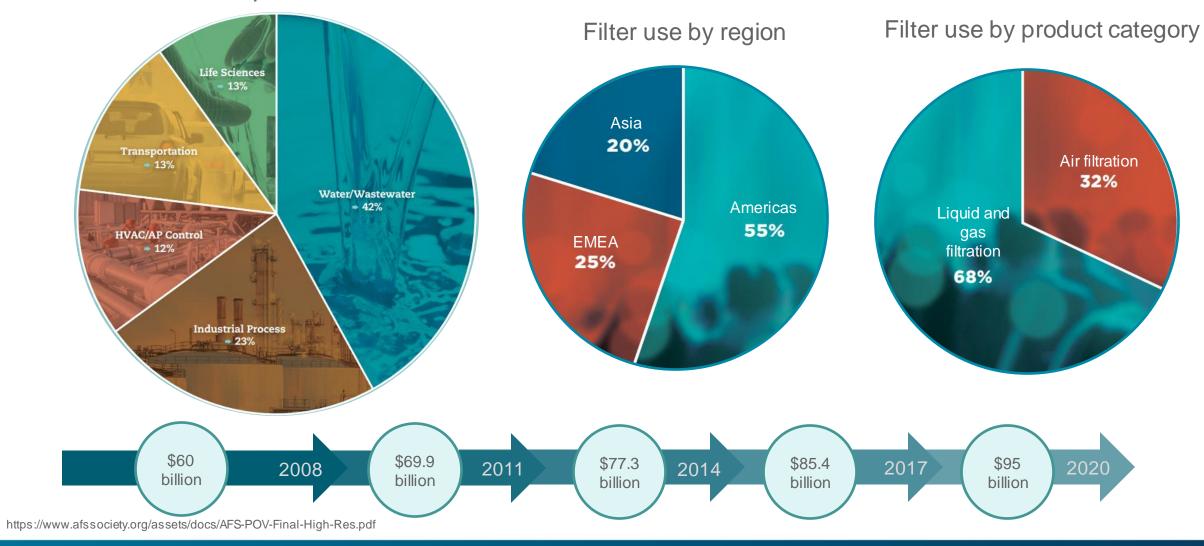
GLOBAL AND ENVIRONMENTAL

- Growing population/urbanization
- Climate change and natural resource scarcity
- Healthcare transformation
- Growth in filtration demand across all end-use markets

https://www.afssociety.org/assets/docs/AFS-POV-Final-High-Res.pdf

MANUFACTURING AND SUPPLY

- Customers want newest technology and latest filtration media
- Creates consolidation of global suppliers in filtration and separation technology segment


REGULATION AND LEGISLATION

- Drives the need for filtration and separation technology
- Demand for reduced waste
- Zero discharge for emissions
- Need for improved product quality processes
- Demand for cleanable/reusable filtration

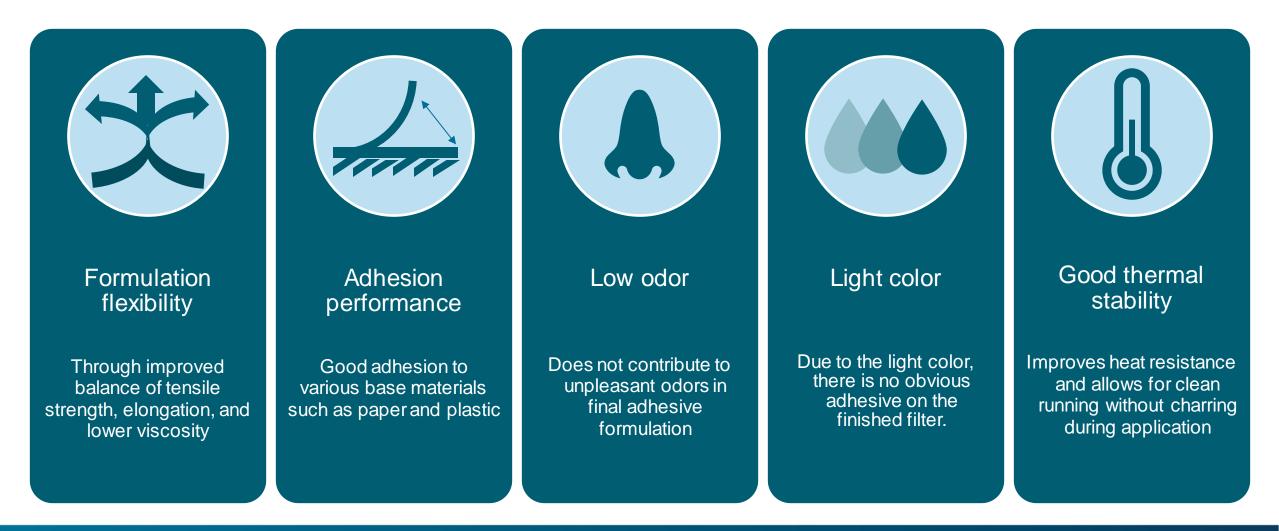
EASTMAN 2

INDUSTRY OVERVIEW

Filtration and separation markets

Approved for external use

EASTMAN 3


ADHESIVE TECHNOLOGY COMPARISON

For filter industry

	Ethylene-vinyl acetate	Metallocene	Polyamide	Polyester	Polyolefin	Polyurethane	Pressure sensitive
	Air	Air	Air	Air	Air	Air	Air
Filter type			Oil	Oil		Oil	
					Water	Water	
	Filter to frame	Filter to frame	Pleat separator	Pleat separator	Foam spiral bead	Pleat separator	• Filter to frame
Application	Pleat separator	 Pleat separator 	Potting	Media lamination	Potting	Frame assembly	 Gasketing
	• First to last pleat	• First to last pleat	End-cap bonding	End-cap bonding	Frame assembly	End-cap bonding	
	Bead	Bead	Bead	Bead	Bead	Bead	Bead
	Spray						
Application method			Melt blown	Melt blown	Melt blown		
					Swirl spray		Swirl spray
			Web	Web			
Temperature resistance	–30°C to 65°C	0°C to 70°C	–20°C to 175°C	< 175°C	–10°C to 155°C	–10°C to 200°C	0°C to 120°C

FORMULATOR ADVANTAGES

Why APO hot melts in filters?

EXPANDED PRODUCT PORTFOLIO

For formulation flexibility

	T _g (°C)	Softening point (°C)	Viscosity @ 190°C _(mPa•s)	Needle penetration	Physical form	Tensile strength (MPa)/elongation (%)
Aerafin 180	-38	120	18,000	20	Pellets	1.9/263
Aerafin 17	-38	125	1,500	20	Pellets	2.3/18
Aerafin 35	-40	120	3,300	14	Pellets	2.7/40

Higher tensile strength

Good elongation at lower viscosity

EASTM

6

MODEL FORMULATION SHOWS GOOD MECHANICAL PROPERTIES

Model formulation #1						
PE wax	10%~20%					
Aerafin 35	45%~55%					
Eastotac H130W	25%~35%					
Antioxidant	0%~1%					

Adhesives with Aerafin 35 have good:

- Mechanical properties for filter application
- Open time/set time
- Viscosity profile

Physical properties of adhesive model formulation using Aerafin 35:

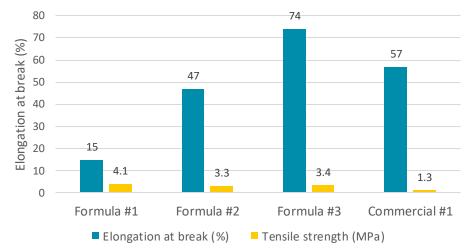
	Viscosity (mPa·s)			RBSP Ha	Hardness	Hardness Set time	Open time	Tensile strength	Elongation	
APO	120°C	140°C	160°C	180°C	(°C)	(Shore A)	(sec)	(sec)	(MPa)	(%)
Aerafin 35	7375	3195	1700	1010	123.6	84	4	14	4.1	15

EXCELLENT THERMAL STABILITY OF AERAFIN 35 AT 180°C

	Aerafin 35	mPE	EVA	b-APO (propene-rich)	b-APO
Initial					
24 hr					
48 hr					
72 hr					
Comments	Slight char after 48 hours	Slight char after 24 hours	Slight char and cloudy after 24 hours	Cloudy and slight char after 48 hours	Slight char after 24 hours

Approved for external use

IMPROVE ELONGATION by using Eastoflex[™] M1058 polyolefin polymer as copolymer


MODEL FORMULATIONS TO IMPROVE ELONGATION

by using Eastoflex M1058 as copolymer

Model formulations

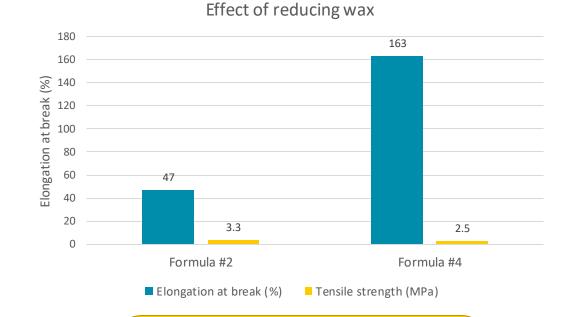
FORMULA	#1	#2	#3	Commercial #1
Licocene [®] PE4201	10%~20%	10%~20%	10%~20%	_
Eastoflex M1058		25%~35%	35%~45%	_
Aerafin 35	45%~55%	15%~25%	5%~15%	_
Eastotac H130W	25%~35%	25%~35%	25%~35%	
Antioxidant	0%~1%	0%~1%	0%~1%	
TOTAL	100%	100%	100%	100%
Viscosity at 180ºC (mPa₊s)	1,010	1,230	1,305	5,600
RBSP, °C	124	139	143	140
Shore A hardness	84	88	83	70

Effect of adding Eastoflex M1058 as copolymer

Increasing the ratio of Eastoflex M1058 improved the elongation performance and increased the RBSP.

Benchmark with commercial adhesive:

- ✓ Lower viscosity
- ✓ Higher elongation
- ✓ Higher tensile strength


EASTMAN 10

IMPROVE ELONGATION by reducing wax

MODEL FORMULATIONS TO IMPROVE ELONGATION

by reducing wax

Model formulations							
FORMULA	#2	#4					
Licocene [®] PE4201	10%~20%	5%~15%					
Eastoflex M1058	25%~35%	25%~35%					
Aerafin 35	15%~25%	15%~25%					
Eastotac H130W	25%~35%	30%~40%					
Antioxidant	0%~1%	0%~1%					
TOTAL	100%	100%					
Tensile strength (MPa)	3.3	2.5					
Elongation (%)	47	163					
Open time (sec)	13	16					
Set time (sec)	3	5					

Reducing the wax:

- Improved the elongation performance but decreased the tensile strength
- Increased the open and set time but not significantly higher

BENEFITS FOR APO HOT MELT for filter industry

- Reduce cost and minimize shelf-life issues
- Adhere to a variety of substrates, especially polypropylene media
- Easy to apply—roll coat, spray, bead
- Short, medium, and long open-time products to meet the application requirements
- High heat resistance—products can pass UL 94 V2.
- Excellent thermal stability
- Low odor, low VOC

Thank you!

Disclaimer

Although the information and recommendations set forth herein are presented in good faith, Eastman Chemical Company makes no representations or warranties as to the completeness or accuracy thereof. You must make your own determination of their suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. Nothing contained herein is to be construed as a recommendation to use any product, process, equipment, or formulation in conflict with any patent, and we make no representations or warranties, express or implied, that the use thereof will not infringe any patent.

NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS AND NOTHING HEREIN WAIVES ANY OF THE SELLER'S CONDITIONS OF SALE.

Safety Data Sheets providing safety precautions that should be observed when handling and storing our products are available online or by request. You should obtain and review available material safety information before handling our products. If any materials mentioned are not our products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be observed.

© 2021 Eastman Chemical Company. Eastman brands referenced herein are trademarks of Eastman or one of its subsidiaries or are being used under license. Non-Eastman brands reference herein are trademarks of their respective owners.

EASTR