

### **COMPATIBILIZER FOR BLENDS**

### Kraton Polymers as Compatibilizers for Plastic Blends

Blends of different plastics usually do not show very interesting properties because of incompatibility and lack of interfacial adhesion between components, which leads to segregation between phases. They have low impact, tensile strength and elongation at break.

The most common compatibilizers are block copolymers. Their inherent structure allows compatibility with more than one polymer at a time. Block copolymers can give blends a stable morphology, resulting in systems having reduced brittleness, improved impact strength and properties, which are a combination of those of the blends components. The block copolymer used should have affinity with each of the blend components. This way, adhesion between both phases is increased and dispersion size of the polymers within each other reduced.

Kraton<sup>™</sup> D and Kraton<sup>™</sup> G block copolymers are commonly used as interfacial agents. They have found application in compatibilizing styrenics with polyolefins.

The functionalized Kraton G products are used to compatibilize more polar plastics, e.g. including polyamide, ABS, polyesters with polyolefins. In waste management and reprocessing of production scrap, this technology will offer solutions to the industry and allow them to produce recycled products with good levels of properties. A few examples of the use of Kraton compatibilizer for mixed plastic blends/ternary blends - are given Tables 1-4.



### Table 1: Ternary Blends of Crystal PS, LDPE and Kraton<sup>™</sup> D1152

| Composition, %w                         |      |      |      |
|-----------------------------------------|------|------|------|
| Crystal PS                              | 50   | 47.5 | 45   |
| LDPE                                    | 50   | 47.5 | 45   |
| Kraton D1152                            | -    | 5    | 10   |
| Properties                              |      |      |      |
| Izod Properties                         |      |      |      |
| Notched Izod Impact, kJ/m <sup>2</sup>  | 2.5  | 2.2  | 3.8  |
| Unnotched Izod Impact,kJ/m <sup>2</sup> | 5.4  | 13.0 | 10.1 |
| Failure Mode <sup>1</sup>               | В    | D    | D    |
| Flexural Properties                     |      |      |      |
| Flexural Modulus, MPa                   | 1110 | 1195 | 940  |
| Flexural Strength, MPa                  | 41   | 35   | 31   |

## Table 2: Ternary Blends of PA-6, PP with Kraton<sup>™</sup> FG1901

| Composition, %w                         |      |      |      |  |
|-----------------------------------------|------|------|------|--|
| PA - 6                                  | 50   | 47.5 | 45   |  |
| PP Copolymer                            | 50   | 47.5 | 45   |  |
| Kraton FG1901                           | -    | 5    | 10   |  |
| Properties                              |      |      |      |  |
| Izod Properties                         |      |      |      |  |
| Notched Izod Impact, kJ/m <sup>2</sup>  | 4    | 27   | 87   |  |
| Unnotched Izod Impact,kJ/m <sup>2</sup> | 12   | 158  | 144  |  |
| Failure Mode <sup>1</sup>               | В    | D    | D    |  |
| Flexural Properties                     |      |      |      |  |
| Flexural Modulus, MPa                   | 1015 | 1205 | 1075 |  |
| Flexural Strength, MPa                  | 28   | 39   | 36   |  |

## Table 3: Ternary Blends of Polyesters,Polyolefins with Kraton FG1901

| Composition, %w                         |      |      |     |      |
|-----------------------------------------|------|------|-----|------|
| PP Copolymer                            | 50   | 47.5 | -   | -    |
| LDPE                                    | -    | -    | 50  | 47.5 |
| PET                                     | 50   | 47.5 | 50  | 47.5 |
| Kraton FG1901                           | -    | 5    | -   | 5    |
| Properties                              |      |      |     |      |
| Izod Properties                         |      |      |     |      |
| Notched Izod Impact, kJ/m <sup>2</sup>  | 2.2  | 3.5  | 2.4 | 3.7  |
| Unnotched Izod Impact,kJ/m <sup>2</sup> | 7.9  | 11.7 | 7.5 | 16.7 |
| Failure Mode <sup>1</sup>               | В    | D    | В   | D    |
| Flexural Properties                     |      |      |     |      |
| Flexural Modulus, MPa                   | 1455 | 1265 | 940 | 780  |
| Flexural Strength, MPa                  | 42   | 41   | 33  | 28   |

# Table 4: Ternary Blends of ABS, Polyolefins andKraton FG1901

| Composition, %w                       |      |      |      |      |
|---------------------------------------|------|------|------|------|
| ABS                                   | 50   | 45   | 50   | 45   |
| PP Copolymer                          | 50   | 45   | -    | -    |
| HDPE                                  | -    | -    | 50   | 45   |
| Kraton FG 1901                        | -    | 10   | -    | 10   |
| Properties                            |      |      |      |      |
| Impact Properties <sup>2</sup>        |      |      |      |      |
| Notched Izod Impact, J/m              | 64   | 251  | 53   | 112  |
| Instrumented Impact, J <sup>3</sup>   | 1.2  | 6.7  | 2.7  | 5.1  |
| Stress-Strain Properties <sup>4</sup> |      |      |      |      |
| Tensile Yield Stress, MPa             | 24.5 | 23.4 | 27.6 | 25.6 |
| Tensile Break Strength, MPa           | 23.7 | 19.9 | 27.6 | 19.8 |
| Tensile Elongation, %                 | 3    | 75   | 2    | 53   |

1. B - Brittle failure; D - Ductile failure

2. Izod Impact acc. to ASTM D256, J/m

3. Instrumented Impact acc. to ASTM D3763, J

4. Acc. to ASTM 638

#### Kraton Corporation (NYSE: KRA)

#### LOCATIONS

**U.S.A. HEADQUARTERS** Houston, Texas **EUROPE, MIDDLE EAST, AFRICA** Almere, The Netherlands

**ASIA PACIFIC** Shanghai, China **SOUTH AMERICA** Paulinia, Brazil

**INDIA** Mumbai, India

For more information, visit our website at www.kraton.com or email info@kraton.com

#### Legal Disclaimer:

Kraton Corporation and all of its affiliates, including Arizona Chemical, believe the information set forth herein to be true and accurate, but any recommendations, presentations, statements or suggestions that may be made are without any woranty or guarantee whatsoever, and shall establish no legal duty on the part of any Kraton affiliated entity. The legal responsibilities of any Kraton affiliate with respect to the products described herein are limited to those set forth in Kraton's Conditions of Sale or any effective sales contract. NOTE TO USER: by ordering/receiving Kraton product you accept the Kraton Conditions of Sale applicable in the region. All other terms are rejected. Kraton does not warrant that the products described herein are suitable for any particular uses, including, without limitation, cosmetics and/or medical uses. Persons using the products must rely on their own independent technical and legal judgment, and must conduct their own studies, registrations, and other related activities, to establish the safety and efficacy of their end products incorporating any Kraton product in any specific application or in conflict with any existing patent rights. Kraton reserves the right to withdraw any product from commercial availability and to make any changes to any existing commercial or developmental product. Kraton expressly disclaims, on behalf of all Kraton affiliates, any and all liability for any any damages or injuries arising out of any axisting relating to the use of any information set forth in this publication, or the use of any Kraton products.

\*KRATON and the Kraton logo are either trademarks or registered trademarks of Kraton Corporation, or its subsidiaries or affiliates, in one or more, but not all countries.

©2017 Kraton Corporation